Thursday, November 26, 2015

Compatibility between mitochondrial and nuclear genomes correlates with the quantitative trait of lifespan in Caenorhabditis elegans.

We just published a new paper in Sci Rep.

Scientific Reports 5, Article number: 17303 (2015)
doi:10.1038/srep17303

Compatibility between mitochondrial and nuclear genomes correlates with the quantitative trait of lifespan in Caenorhabditis elegans.

Abstract
Mutations in mitochondrial genome have epistatic effects on organisms depending on the nuclear background, but a role for the compatibility of mitochondrial-nuclear genomes (mit-n) in the quantitative nature of a complex trait remains unexplored. We studied a panel of recombinant inbred advanced intercrossed lines (RIAILs) of C. elegans that were established from a cross between the N2 and HW strains. We determined the HW nuclear genome content and the mitochondrial type (HW or N2) of each RIAIL strain. We found that the degree of mit-n compatibility was correlated with the lifespans but not the foraging behaviors of RIAILs. Several known aging-associated QTLs individually showed no relationship with mitotypes but collectively a weak trend consistent with a role in mit-n compatibility. By association mapping, we identified 293 SNPs that showed linkage with lifespan and a relationship with mitotypes consistent with a role in mit-n compatibility. We further found an association between mit-n compatibility and several functional characteristics of mitochondria as well as the expressions of genes involved in the respiratory oxidation pathway. The results provide the first evidence implicating mit-n compatibility in the quantitative nature of a complex trait, and may be informative to certain evolutionary puzzles on hybrids.


Saturday, November 21, 2015

Collective effects of common SNPs in foraging decisions in Caenorhabditis elegans and an integrative method of identification of candidate genes

A new paper of ours just published, demonstrating the power of the MGD theory in solving great puzzles of contemporary biology.

http://www.nature.com/articles/srep16904




 2015 Nov 19;5:16904. doi: 10.1038/srep16904.


Abstract

Optimal foraging decision is a quantitative flexible behavior, which describes the time at which animals choose to abandon a depleting food supply. The total minor allele content (MAC) in an individual has been shown to correlate with quantitative variations in complex traits. We have studied the role of MAC in the decision to leave a food lawn in recombinant inbred advanced intercross lines (RIAILs) of Caenorhabditis elegans. We found a strong link between MAC and the food lawn leaving rates (Spearman r = 0.4, P = 0.005). We identified 28 genes of unknown functions whose expression levels correlated with both MAC and leaving rates. When examined by RNAi experiments, 8 of 10 tested among the 28 affected leaving rates, whereas only 2 of 9 did among genes that were only associated with leaving rates but not MAC (8/10 vs 2/9, P < 0.05). The results establish a link between MAC and the foraging behavior and identify 8 genes that may play a role in linking MAC with the quantitative nature of the trait. The method of correlations with both MAC and traits may find broad applications in high efficiency identification of target genes for other complex traits in model organisms and humans.